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ABSTRACT

A variety of detection statistics have been developed and applied to hyperspectral imagery (HSI).  The
Reed Xiaoli (RX) algorithm is a generalized likelihood ratio test (GLRT) that uses local estimates of the spectral
mean and spectral covariance.  It satisfies an optimality criterion if, locally, the spectral data have a multivariate
normal probability distribution.  Alternatively, the stochastic expectation maximization (SEM) algorithm may be
used to estimate the spectral mean values and spectral covariance matrices of a pre-determined number of classes.  A
detection statistic is computed by identifying each pixel with the class having maximal a posteriori probability and
applying the GLRT detection statistic for that class.  These algorithms are based on different models and provide
different information about the imagery.  For example, the RX algorithm seeks to identify local anomalies, and the
SEM based detector attempts to discern those pixels that do not belong to one of the model classes.  Thus we
evaluate the improvement in detection performance that results from developing a joint RX-SEM decision criterion.
The joint decision boundaries are obtained by modeling the output distribution of each of the algorithms and
selecting a joint distribution that further incorporates the correlation between the RX and SEM detector output.  The
performance of the resulting fusion statistics are compared with the separate performance of the algorithms and
AND/OR fusion rules.

1. INTRODUCTION

Fusion problems arise in surveillance if a scene is observed using multiple sensors, if data from a sensor is
processed using various techniques, or if the scene is surveyed from diverse positions or at different times.  Using
multiple sensors is advantageous for detection and classification problems if the sensors, e.g., broadband imagers,
foliage penetration radar, and spectral sensors covering various wavelengths, provide complimentary information.
Furthermore, as each sensor may have better performance under certain conditions and as the characteristics of the
background, target, and environment may be unknown, the best surveillance strategy for a given problem may be to
fuse the outputs of several sensors and/or algorithms.  Target detection algorithms are generally derived from
models of the sensor data and an optimality criterion, such as the Neyman-Pearson rule, using approximations
necessitated by limited knowledge of the background and target.  Algorithms are often adapted to uncertain
conditions by estimating parameters of the underlying model in-situ, however different modeling approaches may
lead to fundamentally different techniques, and none of the methods may be universally superior.  In these
circumstances algorithm fusion may be used to resolve the inconsistencies of competing detection algorithms.

In this paper we develop transform methods to obtain joint-decision contours for a set of detection
statistics, and we apply this technique to anomaly detection in hyperspectral imagery using the RX and SEM
algorithms. The transforms are based on probability distributions of the output of the individual detection statistics,
and their correlation.  The performance of the transform approach to fusion is compared with AND and OR fusion
rules and with a model selection approach.  The performance of these algorithms is compared on three hyperspectral
data sets.

2. RX AND SEM ALGORITHMS

The RX algorithm [7] is based on the assumptions that within a small region of a test pixel (i,j) the
background has a multivariate normal density with mean ijµ and spectral covariance matrix ijΓ :
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The RX detection statistic [7] is derived as a  generalized likelihood ratio test:
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where ),( ω⋅ip is the probability density function of the observation under hypothesis i

( present)target : absent; target : 10 HH given the parameter .ω  In application to RX, ],[ Γ= bω
where b is the signature of the target spectrum, and Γ is the spectral covariance matrix.  For a single pixel target the
RX statistic may be represented as
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The RX statistic is defined more generally for spatially extended targets by  [7]

The stochastic expectation and maximization algorithm (SEM) [1,4] has been applied to segment
hyperspectral imagery into sets of classes each of which is described by a multivariate Gaussian pdf. Thus the
hyperspectral image is modeled as having a Gaussian mixture pdf

A detection statistic has been constructed on the basis of SEM segmentation. Pixel (i,j) is assigned to the SEM class
kij =ψ  such that the conditional probability that observation xij came from class k is maximal i.e.

The SEM detection statistic operating on xij is then the RX algorithm for the given class, i.e. it is the class
conditional GLRT

Gamma mixture distributions were used to model the output of the RX and SEM algorithms.  The gamma
density with shape parameter ν and scale parameter a is given by

A gamma mixture density has the form

At the pixel level the RX, Eq. 3, and SEM, Eq. 7, algorithms apply a quadratic form
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to each observation.  Thus, if the background is normally distributed and if parameters are known with sufficient
accuracy, the output of RX applied to background only data would have a chi-squared distribution on n degrees of
freedom (DOF) where n is the number of linearly independent dimensions of the data [8].  The chi-squared
distribution on n DOF is the gamma distribution with 2/n=ν , and .1=a  If the background regions have Gaussian
mixture distributions or if there is significant parameter estimation error, then the RX output will have a gamma
mixture distribution [6].  Similarly, if the SEM algorithm perfectly assigned pixels to Gaussian classes, the output of
SEM from each class would be a chi-squared distribution.  Classification and parameter estimation errors, however,
can lead to SEM having a gamma mixture distribution.   The background may not be well fit by a Gaussian mixture
distribution, in which case the Gamma mixture distribution may not provide the best approach to modeling the
detector outputs.  The fusion method defined below is not dependent on any particular form of the marginal densities
and can be implemented using non-parametric descriptions of the pdf.  However, the gamma mixture distributions,
with m=2, provide good descriptions of the data utilized in this paper.  For example, Figure 1 compares the
empirical cumulative distribution of the SEM algorithm applied to desert VNIR data and the estimated 2-state
gamma mixture distribution.

As indicated above, we anticipate that the distribution of the RX algorithm will depend in part on whether
or not the neighborhood of a test pixel is well modeled by a Gaussian distribution or a Gaussian mixture distribution.
We use the BHEP test [2] to evaluate the goodness of fit of the multivariate normal distribution to the local
background.  The BHEP test statistic compares the empirical characteristic function of the data, transformed to zero
mean and identity covariance, with the characteristic function of the zero-mean identity-covariance normal

distribution.  Let the sample data to be tested be { } d
n RXX ⊂,,1 L , and let )(1 µ−= −

ii XHY , where

)cov(HH and )( t XXE ==Γ=µ . The empirical characteristic function of Y is

and the BHEP test statistic is

where

The test is consistent, invariant under affine transformations, and applicable to any number of samples and data
dimensions.  The first three moments of the limiting distribution, as the number of samples approaches infinity, are
known and can be used to approximate thresholds of the test statistic corresponding to prescribed probabilities of
type I error. The application of this test also forms the basis for model-selection based fusion described below.

3. FUSION RULES

Model selection and joint-decision fusion approaches are developed and applied to RX-SEM output.  A

fusion rule partitions the RX-SEM space into regions R0 and R1 such that if 0))(),(( Rxsxr ∈ then observation x is

declared to be target free, and if 1))(),(( Rxsxr ∈ then observation x is declared to come from a target. Since RX

and SEM are positive valued, these regions may be defined by a mapping { }1,0:
2 →+Rδ  such that ),(1 iRi
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The model selection rule is defined as follows.  For each observation xij, let )),(()( jiNBHEPxbb ij == be

the BHEP test, Equation 12, applied to the reference data in a neighborhood ),( jiN of pixel (i,j), and let

SEMRXBHEP τττ  and ,, be thresholds for BHEP, RX, and SEM respectively.  Then
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The AND and OR fusion rules are based on the marginal distributions of RX and SEM output.  For each

probability of false alarm, ,α let )(ατ R and )(ατ S be the corresponding thresholds of RX and SEM, respectively.

Then
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The joint-density method utilizes a joint pdf defined on (R,S). Let f(r,s) be a joint RX-SEM density, then f can be
used to define decision regions, , and 10 RR as follows.  For each ),0[ ∞∈c define
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Note that JDδ  is a likelihood ratio in case the distribution of RX-SEM under the target present hypothesis is uniform

on a bounded region R such that ,1),(),( =⇒∈ srRsr c δ where Rc denotes the complement of R.

In the present work, the joint densities have been constructed using a transform approach.   Let
k
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kk xxxT ΨΦΨΦ= −− L  and )(xT∇  is the determinant of the Jacobian of T. Then f is

a probability density function on kR such that the distribution of xk induced by f, the kth marginal distribution, is

kΨ  and C, the normal score correlation of f , is an asymptotically unbiased estimator of the normal score correlation

of the underlying distribution [3].  Furthermore, f is the maximum entropy density among pdfs having prescribed
marginals and normal score correlation [3].  f is the pullback of p via T.



A modification of this approach can be utilized to obtain a standard set of marginal densities.   Let

),,( 1 kΛΛ L  be a preferred set of k marginal distributions, and define ))((1
jjjj xw ΨΛ= −
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marginal distribution of ),,( 1 kwww L= is .jΛ  Define pdf g to be the pullback of p via
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gamma distribution.  We are evaluating the relative advantages of standardizing the marginal distributions to
exponential form.

4. APPLICATIONS

These techniques have been applied to three hyperspectral data sets and the results are displayed in Figures
2-12. In these figures FR refers to fusion using the joint-density approach in which separate densities are estimated
for the sets B0, and B1 defined by { } { } .)(| and)(| 10 BHEPBHEP xbxBxbxB ττ >=≤=  FG refers to fusion using the

joint-density approach in which a global density is fit to (R,S) output.  MS refers to fusion using the model selection
approach. The distributions of RX and SEM output were fit to 2-term gamma mixture densities using the
expectation-maximization algorithm.  The targets are indicated as red diamonds

Data set one is VNIR hyperspectral data collected over a desert.  Figure 2 is a scatter plot of spatially
associated RX-SEM output with an overlay of the contours of the probability density obtained using the transform
method defined above.  Figure 3 compares ROC curves of SEM, RX and FR.  The six outermost targets are detected
without false alarms by SEM and FR, whereas RX incurs a significant number of false alarms to detect these targets.
Figure 4 compares the performance obtained using fusion rules FG, FR, and MS.  FR is able to detect six targets
without false alarms, whereas FG can only detect five without false alarm.  Furthermore, FR incurs approximately
an order of magnitude fewer false alarms than MS to detect the seventh target.  Figure 5 compares the performance
of fusion rules OR, AND, and FR.  OR and FR are comparable and detect the outermost targets without false alarms,
whereas AND incurs a significant number of false alarms at threshold settings that detect these six targets.

Data set two, which is VNIR hyperspectral data collected over a forest, is similarly analyzed in Figures 6-9.
The six (PD=0.33) outermost targets in Figure 6 are detected with fewer false alarms using one of the fusion
approaches than using either RX or SEM alone as evidenced in the ROC curves.  At this level, from Figure 8, one
sees that FR has approximately half as many false alarms as FG and MS.  From Figure 9, at PD=0.3, one sees that
FR has about an equal number of false alarms as AND and approximately half as many as OR.  The next three
targets are substantially further down in the clutter in Figure 6, and the number of false alarms incurred to detect
them goes up by approximately two orders of magnitude using any of the fusion techniques.  From this point to
detection of all targets the fusion result is comparable to the better of the two algorithms, SEM, but neither is
satisfactorily separating the targets from the clutter.

Data set three, which is LWIR hyperspectral data from a forest, is analyzed in Figures 10-12.  The data set
contains seven targets, and several of the targets are represented by more than one diamond in Figure 10.  We see,
from Figure 11, significant fusion gain, a reduction in the number of false alarms by 1.5 and 2 orders of magnitude,
using FR rather than RX or SEM, respectively, at threshold levels sufficient to detect the four outermost targets.
The other three targets are well inside the clutter, and the performance of FR is comparable to RX, which in this case
outperforms SEM.  From Figure 12 we see that FR outperforms OR and AND in detecting the four outermost targets
by an order of magnitude in the number of false alarms, and their performance is comparable at higher probabilities
of false alarm.  The model selection fusion approach would default to the SEM algorithm in this case as all pixels
evaluated failed the BHEP test.

5. CONCLUSIONS/FUTURE DIRECTIONS

This study has demonstrated improved performance by following RX and SEM processing with a fusion
algorithm. At thresholds such that either RX or SEM has fewer than 10-100 false alarms per km2 fusion has been
shown to reduce false alarms by 0.25 to 2 orders of magnitude. Furthermore, if thresholds are set so that both
algorithms produce more than approximately 100 false alarms per km2, the performance of the fusion algorithm was
comparable to or better than either RX or SEM alone.



This work has also shown that the FR fusion algorithm produces more consistent results then either of the
other algorithms considered in this study.   Table 1 shows the best algorithm from the set of choices for each data
set.  If the choices are SEM and RX, then an algorithm selection criterion should be developed to determine the
conditions under which each algorithm should be used, as SEM is the algorithm of choice for data sets one and two,
while RX achieves better results for data set 3.  The model selection criterion based on the BHEP test worked quite
well for data sets 1 and 2, as evidenced in Figures 4 and 8.  However, this test would have selected SEM for all of
data set 3, and RX was the better algorithm to use for these data.  Similarly AND is preferred over OR on data set 2,
but OR is preferred over AND on data sets 1 and 3.  Thus if these fusion rules are to be adopted, then a selection
criterion needs to be developed.  When the choices include FR it is the preferred approach, and its performance is
very similar to OR on data set 1 and to AND on data set 2.  On data set 3, FR and FG are identical as all pixels lie in
the non-Gaussian class.  On data sets one and two, however, FR is preferred over FG.

Table 1.  The optimal algorithm from the set of choices for each data set.
Algorithm Choices Data Set 1 Data Set 2 Data Set 3

SEM, RX SEM SEM RX
SEM, RX, AND, OR OR AND OR
SEM, RX, AND, OR,
MS, FR, FG

OR~FR AND~FR FR=FG

There are many issues to address in algorithm and sensor fusion. We are investigating alternate means of
modeling the marginal distributions and constructing the joint density.  We are evaluating the relative merits of pixel
level and spatially associated fusion.  We are analyzing the computational efficiency and accuracy of various
parameter estimation techniques.   We will be incorporating other detection algorithms, and we intend to apply these
techniques to certain sensor fusion problems.
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Figure 2. Scatter plot of spatially
associated RX-SEM output from desert
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logarithm of the joint density.

10
-6

10
-5

10
-4

10
-3

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

False alarms per m
2

Nu
m

be
r o

f ta
rg

et
s d

et
ec

te
d

RX

SEM

FR

Figure 3.  ROC comparison  of RX, SEM,
and  FR applied to desert VNIR data.
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VNIR data.

Figure 1. Two-term gamma mixture
density fit to SEM detector output from
desert background data having parameters

,962.01 =ρ ,038.02 =ρ ν1=15.7, ν2=2.44,

a1=0.035, a2=0.305.
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Figure 6. Scatter plot of spatially
associated RX-SEM output from VNIR
forest data and contours of minus the
natural logarithm of the joint density.
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Figure 7. ROC comparison of FR, RX,
and SEM applied to forest VNIR data.
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Figure 8. ROC comparison of fusion methods
FR, MS, and FG applied to forest VNIR data.
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Figure 10. Scatter plot of spatially associated RX-
SEM output from LWIR forest data and contours of
minus the natural logarithm of the joint density.
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Figure 12. ROC comparison of fusion methods
FR, AND, and OR applied to forest LWIR data.


